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ABSTRACT 

To simulate turbulent eddies, initial and interface flow fields need to be synthesized consistent 
with the algorithm being employed. In this report, the turbulent kinetic energy conservation 
issue is discussed followed by a presentation of the detailed steps to synthesize an initial flow 
field for computing turbulent eddies. 

1. Introduction

High-fidelity flow simulations involving complex geometry and flow conditions have become 
routine practices in aerospace sciences and engineering, especially for obtaining steady-state 
solutions. For unsteady flow simulations, often associated with separated flows, turbulence 
modeling has been a major challenge. As the flow analysis involving advanced flow devices and 
operating conditions become increasingly sophisticated, turbulent eddy simulations that include 
significant scales of motion, especially scales relevant to engineering interests, have become 
desirable.  

For practical turbulent eddy simulations, even with the increased computer capability, the large 
eddy simulation (LES) is more realistic than the direct numerical simulation (DNS) of 
turbulence. The LES approach reduces the modeling requirements at the expense of increased 
computing cost compared to Reynolds-averaged Navier-Stokes (RANS) approach. The LES 
approach requires initial and boundary condition procedures consistent with LES algorithm 
being used which may differ from RANS approach. 

Instead of creating new flow solver codes and software, a large number of legacy codes and 
commercial software are now available for applications. In general, it is a common practice to 
extend these legacy codes to the simulation of turbulent eddies and unsteady separated regions. 
Therefore, it would be prudent to assess the validity of this practice. In the current report, we 
intend to review the energy conservation issues in extending legacy codes to turbulent eddy 
simulations. And then we will discuss how to synthesize turbulent flow fields as initial 
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conditions. Similar procedures can be used to generate boundary and interface conditions in 
multi-zone simulations. This will be done using an incompressible Navier-Stokes formulation. 
 
Even though some details of the incompressible Navier-Stokes (INS) formulation, solution 
algorithms and application procedures have been discussed in the monograph by Kwak and 
Kiris [1], some specifics of turbulent eddy simulations are not fully expanded. In the current 
report, we will discuss some issues not fully covered in our book and thus this article can be 
considered as a supplement to the monograph. 
 
Various approaches in mathematical formulation and associated numerical methods for 
incompressible flows have been developed and applied to date. There are books and review 
articles covering many of these methods, for example, Kwak and Kiris [1], Drikakis [2], Hafez 
[3], Ferziger [4], Kwak et al. [5]. Readers are referred to these materials for the fundamentals of 
incompressible flow simulation procedures and applications. 
 
2. Some computational aspects of turbulent eddy simulation 
 
For time-dependent turbulent flows, LES offers the possibility of modeling only the small scale 
eddies, and thus minimizes tuning the turbulence models as required in the RANS approach. 
When solid boundaries are involved, the mesh requirement is very high for LES. Therefore, a 
wall modeled LES (WMLES) or a hybrid RANS-LES became a realistic modeling practice for 
wall-bounded flows.  
 
One important issue in LES is whether the numerical scheme being used conserves turbulent 
kinetic energy. Even though the kinetic energy conservation issue is relevant to compressible 
flow simulations as well, an INS formulation is convenient to investigate this aspect since the 
density fluctuations are not present in the incompressible flow formulation. Thus, the INS 
equations are used in this report. 
 
For LES we need to generate the initial flow field which exhibits physical turbulence statistics 
of the flow being simulated as much as possible. Similarly at the interface of the RANS-LES 
hybrid model, we need to synthesize the interface flow field to be compatible to both RANS and 
LES computations. An initial flow field can be started with arbitrary conditions and continue 
computing until a realistic turbulent flow field is developed numerically. However, this 
approach will be computationally expensive. Another possibility is to generate the flow field 
from a given energy spectrum, E(K), such as the one generated from empirical data or a 
reasonable analytic expression derived from empirical data. Once the initial flow field is 
synthesized, a time advancing scheme should be implemented which conserves the turbulent 
kinetic energy.  
 
Regarding current practices of extending legacy codes to the LES region, we need to determine 
whether the algorithm used in the legacy codes is adequate in the LES region. For example, 
upwinding schemes often used in legacy codes need to be compared to energy conserving 
central differencing schemes to confirm that the magnitude of kinetic energy dissipation due to 
upwinding does not deteriorate large-scale motions. The magnitude of inaccuracy stemming 
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from grid quality needs to be assessed relative to the error due to numerical schemes as well. 
Some specifics are discussed next.  
 
Synthesizing the initial flow field, inflow and outflow conditions are all realistic concerns in 
simulating turbulent eddies. We will present a step-by-step procedure for synthesizing a flow 
field which exhibits realistic turbulent statistics. Even though this procedure may have been well 
known to seasoned CFD researchers, we intend to give a convenient guide to those not quite 
familiar with the turbulent eddy simulation. 
 
2.1 Issues related to extending legacy codes to LES region 

 
In current practices, legacy CFD codes developed primarily for obtaining steady-state solutions 
are often extended to unsteady turbulent eddy simulation whether it be a hybrid RANS-LES, 
wall-modeled, or entirely LES simulation.  

 
Where and why kinetic energy conservation could be important?  
 
For turbulent eddy simulations using LES, grid resolution is high and numerical dissipation 
down to the resolvable scale should be minimized. However, for RANS computations, 
numerical dissipation is added (in the case of central differencing), or implicitly included in flux 
computations (in up-winding formulations) to achieve stability. In many legacy RANS codes for 
3D applications, up-wind biased schemes are used for flux computations. In such cases, one 
needs to ask the following specific question: 
 
Are current algorithms in the legacy codes compatible with the LES approach?  
 
For example, up-winding schemes (or central + dissipation term) designed for obtaining 
primarily steady-state solution in RANS formulations are often highly dissipative. In LES, 
differencing schemes are designed to conserve kinetic energy and thus the dissipation is handled 
by a sub-grid scale model.  
 
As illustrated in Figure 1, application of legacy codes in the LES region with a usual sub-grid 
scale model may result in excessive total dissipation due to a combined effect of numerical 
dissipation and the dissipation coming from the subgrid scale model. 
 
When legacy codes are applied, especially to complex flow computations, we need to 
investigate whether kinetic energy conservation is an issue. Since up-winding (or central + 
dissipation) can resolve energy containing eddies, for those cases where fine grids are utilized to 
increase the resolution of flow dynamics, kinetic energy conservation may not be a significant 
concern. Therefore, for turbulent eddy simulation it would be prudent to examine spatial 
differencing schemes in legacy codes relative to kinetic energy conservation, or define the range 
of applicability where current numerical schemes are acceptable.  
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Figure 1. A schematic of kinetic energy spectra: eddies computed using 1) up-winding scheme vs. 2) 
central-differencing scheme: Shaded region represents the energy dissipated by upwinding compared 
to kinetic energy conserving central differencing scheme. In the figure, E = energy spectrum, k=wave 
number 

 
Specifically, we need to: 
- compare unwinding schemes vs. various central differencing schemes (staggered, 

generalized collocated schemes) relative to kinetic energy conservation, 
- define the region where upwinding schemes (even high order) are deemed unsuitable for use 

in LES, (e.g. - Mittal, et al. [6] studied the suitability of upwinding schemes for LES.) 
- determine where upwinding schemes may be suitable for producing acceptable results for 

lower order statistics i.e. Reynolds stress, velocities, forces and moments etc. This may be 
the situation when the level of energy dissipated due to upwinding is low relative to the total 
flow energy. 

 
In addition, we need to consider the following potential issues: 
- For separated and/or unsteady flows, often a hybrid approach is adopted where RANS is 

used for wall region, switching over to LES away from the wall. Then, numerical schemes 
for the wall region and the separated region may not be compatible. 

- If RANS codes are used in eddy simulations, small scale eddies can be dissipated too much 
and the results may be significantly different from those obtained based on LES (see the 
sketch in Figure 1). In this case, the kinetic energy conservation issue needs to be assessed. 

 
2.2 Kinetic Energy Conservation Issues 

 
In this section, we will review kinetic energy conservation issues related to spatial differencing 
schemes. The kinetic energy conservation issue has been extensively discussed in 
meteorological flow simulation (i.e. weather modeling), and a large volume of research has been 
published in the past. For example, Arakawa [7], Lilly [8] and many others published 
fundamental methods and turbulent flow simulation related to atmospheric flow. The discussion 
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in this section stems from these studies specifically extracted for our applications. Our 
discussion will then be followed by presentation of an example of generating a velocity field 
starting from a given energy spectrum, E(K). For example, for homogeneous isotropic 
turbulence the measured spectrum by Comte-Bellot and Corrsin [9] can be used. For free shear 
flow, a similar procedure can be applied starting from a given energy spectrum (e.g. one derived 
from von Karman spectrum [10]).  
 
Consider, inviscid, zero pressure gradient, constant density, divergence free flow:  
 

∂ui
∂t

+
∂
∂x j

uiuj( ) = 0
		
	 (2.1)	

∂ui
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= 0 	 (2.2)	

Kinetic	energy	equation:	 ui ⋅ 2.1( ) 	
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Now we will look at the difference form of equations (2.1), (2.2) and (2.3).  
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Now	look	at	the	energy	conserving	difference	form	of	equation	(2.1),	(2.2),	and	(2.3).	
	
Note	that	the	second	order	central	differencing	scheme	is	
	

	 ∂f
∂x

= fx
x
+O Δ2( ) = fi+1 − fi−1

2Δ
+O Δ2( )   

 
and the 4th order scheme can be obtained by Richardson extrapolation 
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Then the kinetic energy conserving difference form of (2.1) can be written as 
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Take the difference form of kinetic energy equation (2.3), and then summing over all mesh 
points, 
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To show that this conserves the kinetic energy, we need to show that the RHS of equation (2.5) 
becomes zero for periodic boundary conditions. 
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RHS terms of equation (2.5) can be expanded as  
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The first bracketed term on the RHS becomes zero for periodic boundary, and the second term 
becomes zero for incompressible flow. 
 
The above energy conserving scheme or a similar one can be compared to the up-winding 
scheme typically used in legacy RANS codes. The decaying box turbulence case sketched in 
Figure 1 can be used as a benchmark problem where periodic boundary conditions can be 
imposed. To perform decaying process, it is first required to generate initial turbulent flow field 
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that matches with the experimental energy spectrum. Some details of this synthetic flow field 
generation procedure is explained next. 
 
2.3 Generation of synthetic initial turbulent flow field 
 
For simplicity a uniform Cartesian grid will be used here. Since experimental energy spectrum 
data are available for box turbulence and an analytical expression for free shear flow is available 
derived from empirical data, we will start with a given energy spectrum. 
 
First, the correlation tensor for Reynolds stress is written as 
 
	 	 Rij

rr( ) = ui
rx, t( )uj

rx + rr, t( ) 	
	
The	Fourier	transform	of	Rij produces	the	spectrum	tensor	φij :	
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where dσ 	is	the	surface	element	of	the	spherical	shell	of	radius	K .	
	
The	spectrum	function	φij of	the	filtered	field	is		
	
φij kn( ) ≅

)
ui kn( )

)
uj
* kn( ) 	

	
where	

)
ui is	discrete	Fourier	Transform	of	ui 	and	superscript	*	denotes	complex	conjugate. 

 
The filtered three-dimensional energy spectrum, E k( ) ,	can	be	written	as		
 
E k( ) = 2πk2φii k( ) 	 	 	 (2.7)	
E kn( ) ≅ 2πkn2

)
ui kn( )

)
uj
* kn( ) 	 	 (2.8) 

 
For a given energy spectrum, LHS of Eq. (2.8), discrete Fourier Transformed velocity field can 
be obtained. Here, 

)
ui needs	to	be	chosen	to	satisfy	incompressibility	in	grid	space.	
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Continuity	in	grid	space:	
	
u =

)
ui k( )

n
∑ exp(ikx)

	
	
To illustrate the continuity in grid space, use a second order central differencing scheme 
 
δu
δx

=
1
2Δ

uk+1 −uk−1( ) 	

	
Fourier	transform	of	the	above	is	
	
δû
δx

=
1
Δ
sin Δk1( ) û ≡ k1""û 		 	 (2.9)	

 
Then Du = 0 	in	Fourier	space	can	be	expressed	as		
	
ki
"ûi = 0 	 	 	 	 (2.10)	

 
For any k ,	 k" can	be	obtained	by	equation	(2.9).		Then	 û 	can	be	selected	on	a	perpendicular	
plane	to	 k" in	 k -space	as	indicated	in	Eq	(2.10).	
 
How to achieve statistical isotropy: 
 
Once the magnitude of ûj kn( ) 	is	obtained	from	Eq	(2.8),	a	divergence	free	velocity	field	can	
be	obtained	by	satisfying	Eq	(2.10).	A	procedure	to	satisfy	statistical	isotropy	can	be	as	
follows;	
	
- the	real	and	imaginary	part	of	 ûj 	must	be	chosen	randomly	
- first	choose	a	unit	vector	A	on	a	plane	perpendicular	to	 k" by	turning	a	random		angle	

from	a	reference	frame		
- choose	another	unit	vector	B	in	a	same	way	
- select	a	random	angle,	θ ,	and	define	

a = cos θ( ) ,		 b = sin θ( ) 	
- then	the	real	and	imaginary	part	of	 ûj 	can	be	selected	as	below	

ûj kn( ) = ûl kn( ) ûl* kn( )
1 2

aAj + ibBj( ) 	 	 (2.11)	
 
3. An illustration of synthetic turbulent flow field generation procedure 
 
In this section detailed steps for synthesizing turbulent flow field commensurate with a given 
energy spectrum are illustrated. 
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Select an energy spectrum: 
First, choose an energy spectrum either from an experiment or a mathematical approximation 
such as the von Karman spectrum [9]. In the current example, one spectrum from the classical 
experiment by Comte-Bellot and Corrsin [9] can be considered as an initial energy spectrum. 
 
For numerical computation, we need to generate filtered field, E k( ) , from the empirical 
spectrum, E k( ) . Let’s define the filtered field, f , as below: 
 

f x( ) = G x− "x( )∫ f "x( )d "x
	

 
This filtering process filters out small-scale motion while preserving large scale energy 
containing motion. Generally, the following Gaussian filter is preferred to “box” filter. 
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where  γ = const :	defines	filter	shape	

	 	 ΔA :	filter	length	scale 
 
Then the filtered flow field becomes 
 

 u x( ) = γ
π
1
ΔA

$
%
&

'&

(
)
&

*&

3

u
−∞

∞

∫ .x( )exp −γ x− .x( )2 /Δ2A{ }d .x  

 
The Fourier transform of this is  
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We can then derive the following filtered energy spectrum  

E k( ) = E k( )exp −
Δ2A
2γ
k2

$

%
&

'

(
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Calculate amplitude of velocity, ûi kn( ) : 
Once we select E k( ) ,	then	we	can	calculate	the	filtered	energy	spectrum	from	Eq.	(3.1).	
First	we	need	to	choose	the	shape	parameter,	 γ ,	then	ΔA .	
If	we	set	 γ = 6 ,	the	second	order	term	for	 uiu j using	Gaussian	filter	results	in	the	same	
second	order	term	using	a	box	filter	(sometimes	called	as	“Top	Hat”	filter).		
Then	the	filtered	energy	spectrum,	E k( ) ,	becomes	
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	 E k( ) = E k( )exp −
ΔA
2

12
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Next we need to choose, ΔA .	
For	a	mesh	system	with	a	width,	Δ ,	the	smallest	scale	wave	( 2Δ 	wave)	has	a	wave	
number,	 π Δ ,	and	the	wave	number	for	the	largest	scale	motion	is	 2π

NΔ
.	

Now	we	need	to	choose	the	mesh	number,	N ,	and	the	size,	Δ ,	such	that	the	grid	system	
chosen	captures	as	much	of	the	turbulent	energy	as	possible.	At	the	same	time	it	should	
capture	the	“inertial	sub-range.”	
For	the	mesh	system,	 n1, n2, n3( ) ,		

	 k = 2π
NΔ
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For	N3mesh	the	integer,	 ni ,	ranges,	from	
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Then choose ûi kn( ) following	the	procedure	described	in	Section	2.3.	
To	obtain	the	real	value	for	 ui 	

û −kn( ) = û
*
kn( ) 	

The	imaginary	part	of	 kn cancels	the	imaginary	contribution	of	−kn component.	
	
Calculate velocity, u x( ) : 
 
Once we selected the velocity field in Fourier space, the velocity filed in physical space can be 
obtained by inverse Fourier transform. To utilize fast Fourier transform (FFT), the maximum 
number of grid points, N, has to be 2m .	Therefore,	in	selecting	 û in	spectral	space,	we	can	set	
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The	initial	flow	field	generated	as	described	above	will	have	slightly	lower	kinetic	energy	
at	high	wave	number	than	the	energy	spectrum	we	started	with.	However,	this	may	be	
acceptable	for	practical	purposes.	Thus	we	obtain	the	following	velocity	field:	
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We need to choose a mesh system with sufficient resolution for the desired small scale eddies.  
 
Time-step Size Estimate: 
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The time step size can then be selected which makes spatial and temporal truncation errors in 
comparable magnitudes. A specific example is described next as an illustration on how time step 
can be determined for computing evolution or decay of turbulent eddies. 
 
When a 4th order spatial differencing is used, the magnitude of the truncated term can be 
estimated as  
 

Order(Spatial	Truncated	Term) ~ Δ4

120
∂5u2

∂x5
~ Δ4

120
U
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2

	 (3.2)	

If a 2nd order time scheme is used, then the truncation term would be 
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Here, λ 	is	the	Taylor	microscale	defined	by	
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This estimate is based on isotropic turbulence idea since small scale eddies in large Reynolds 
number flows are isotropic. Even though the Taylor microscale does not represent any physical 
length scale, it is often used as a dividing scale between integral and viscous range.  Now we 
want to establish U, λ and	 τ 	relationship	for	the	time	step	Δt 	estimate.	
In	isotropic	turbulence,	the	dissipation	rate,	ε ,	can	be	estimated	to	be	
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Following Kolmogorov, the dissipation time scale,  τ ,	can	be	estimated	as		
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ν
ε
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From the above equations, we can obtain the following relation: 
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Equating spatial and time truncated terms in Eq. (3.2) and (3.3), 
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Then we get the following relation between Δt 	and	Δ :	
	

Δt( )2 ≅
0.26( )3

20
Δ4

λU( )2 	
 

We can get an estimate of time step once we have selected a mesh size and an energy spectrum 
for generating the initial flow field. This time step may be used to carry on a few steps of 
computation to make the flow field adjust itself once synthetically generated. 
 
4. Remarks on Pacing Issues for General Applications of LES 
 
In this report we revisited the relevance of kinetic energy conserving schemes to turbulent eddy 
simulation especially for general engineering-level flow analysis, and presented detailed steps 
for generating an initial LES flow field synthetically for turbulent eddy simulation. 
 
There are a number of pacing issues in applying LES in general flow analysis. As we discussed, 
the adequacy of extending legacy codes in LES region needs to be verified. In particular, in real-
world applications, the magnitude of energy loss due to dissipation terms in legacy codes has to 
be insignificantly lower than the dissipation due to sub-grid scale models. This may be 
algorithm and grid dependent. 
 
The primary difficulty yet to be resolved in LES is related to wall-bounded flows. Since the 
number of mesh points required for resolving wall region is huge (the estimate of mesh 
requirements varies among estimators), wall-modeled LES (WMLES) has been utilized by 
numerous researchers to make LES practically usable. Essentially, the accuracy of WMLES is 
dictated by the accuracy of the wall model. 
 
To alleviate the complications, implicit LES (ILES) has been advocated by some researchers, 
where wall modeling is replace by numerical dissipation which depends on the mesh. This is 
similar to direct numerical simulation idea where all significant scales are assumed to be 
computed requiring no modeling. The mesh used in ILES has to be constructed such that the 
mesh related dissipation does not contaminate large-scale motion significantly.  Naturally 
construction of the right mesh system, especially near the walls, becomes important. This 
approach needs further investigation or some best practice guidelines need to be established. 
 
In summary, LES offers conceptually a good possibility for simulating turbulent eddies without 
statistical modeling. However, there are a number of issues in practice requiring further 
development. Synthetic initial flow field generation we presented in this report can be a part of 
the general recipe for turbulent eddy simulation. 
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